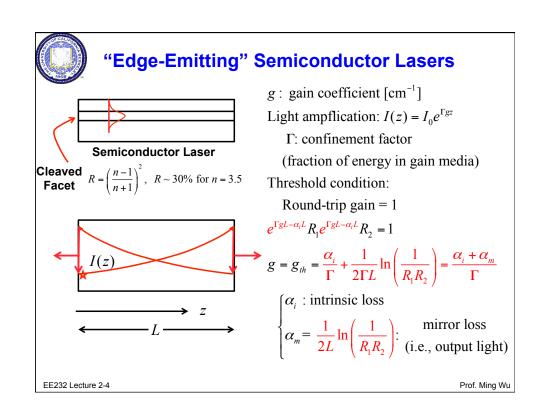
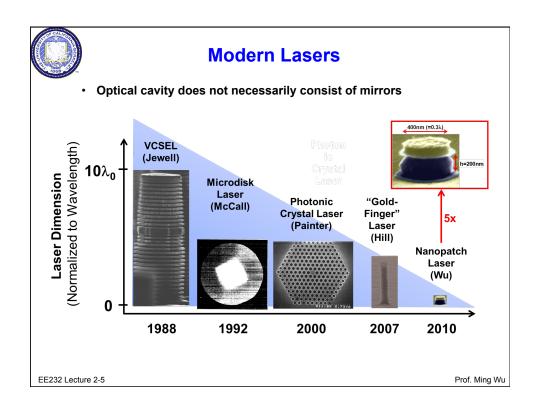
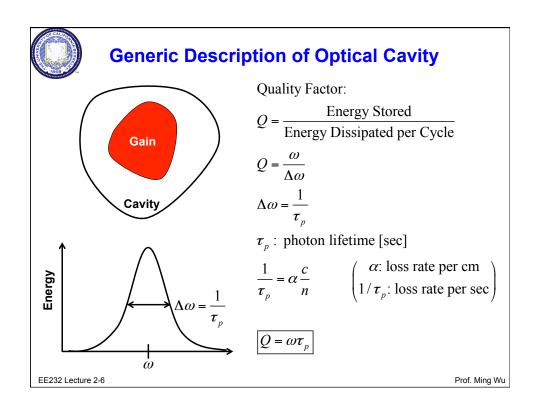

EE 232 Lightwave Devices Lecture 2: Basic Concepts of Lasers

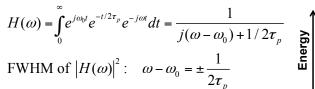

Instructor: Ming C. Wu


University of California, Berkeley Electrical Engineering and Computer Sciences Dept.


EE232 Lecture 2-1 Prof. Ming Wu

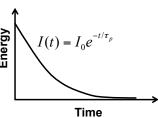
Photon Lifetime and Spectral Width

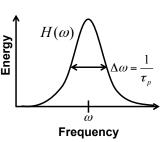
Decay of optical energy when input is turned off


(ring-down measurement):

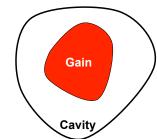
$$I(t) = I_0 e^{-t/\tau_p} \quad \text{for } t \ge 0$$

Electrical (optical) field:


$$E(t) = E_0 e^{j\omega_0 t} e^{-t/2\tau_p} \quad \text{for } t \ge 0$$


Frequency domain response (Fourier transform):

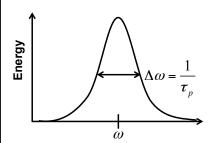
EE232 Lecture 2-7



Prof. Ming Wu

EE232 Lecture 2-8

Threshold Condition of Generic Lasers



Gain = Loss

(rate of gain = rate of loss)

$$\Gamma g_{th} \frac{c}{n} = \frac{1}{\tau_p} = \frac{\omega}{Q}$$

$$g_{th} = \frac{\omega}{Q} \frac{n}{\Gamma c}$$

Quantum efficiency:

$$\eta = \frac{\alpha_m}{\alpha_m + \alpha_i} = \frac{Q_{rad}^{-1}}{Q_{rad}^{-1} + Q_{loss}^{-1}} = \frac{Q_{rad}^{-1}}{Q^{-1}}$$

$$\eta = \frac{Q}{Q_{rad}}$$

Prof. Ming Wu

Typical Q of Semiconductor Laser

Edge-emitting laser:

$$L = 100 \mu m$$
, $R = 30\%$, $\omega \sim 100 THz$, $\tau_n \sim 1 ps$, $Q \sim 600$

Vertical Cavity Surface-Emitting Laser (VCSEL)

$$L = 1\mu m, R = 99\%, Q \sim 700$$

Microdisk (Whispering Gallery Mode or WGM) Laser $Q \sim 1000$ (up to 10^{11} possible in low loss materials)

Photonic crystal laser: $Q \sim 1000$ (up to 10^6 possible)

Metal cavity laser (plasmonic laser): $Q \sim 10$ to 100

EE232 Lecture 2-9 Prof. Ming Wu

Gain Cross-Section

Gain cross-section (instead of gain coefficient) is often used to measure the gain in gas or solid-state lasers:

$$\sigma$$
: [cm²]

Gain cross-section is related to gain by:

$$g = N\sigma$$

where N is concentration of active molecules

For comparison, in semiconductor lasers:

$$g \sim 100 \text{ cm}^{-1}$$

 $N \sim 10^{18} \text{ cm}^{-3}$ (typical electron concentration at threshold)

$$\sigma \sim 10^{-16} \text{ cm}^2 (= (0.1 \text{nm})^2)$$

Note: more precise relation between gain and carrier concentration will be discussed in future lectures

EE232 Lecture 2-10 Prof. Ming Wu